在抛硬币的例子里,有一个重要的前提条件——硬币的正面与反面出现的概率各为50%。你觉得这看起来一定是对的吗?科学不相信感觉,科学相信实验。
下面,请准备好一枚一角的硬币(因为一角的更轻),咱们一起来做抛硬币的实验。实验过程是:高高抛起硬币并接住,每抛一次,都把结果记录下来,正面的次数X和反面的次数Y分别记录。
抛到10次,结果是,正面3次,反面7次。
抛到100次时,结果是,正面43次,反面57次。
抛到200次时,结果是,正面97次,反面103次。
抛到1 000次时,结果是,正面513次,反面487次。
这个实验可以永远进行下去,实验的目的不是找到某一次抛掷,使得X和Y刚好相等,实验的目的是观察X和Y的变化趋势。因此,实验暂时只进行到1 000次。图1-1是根据抛掷过程绘制出的曲线,曲线代表的是正面所占的比例,即X/(X+Y)随抛掷次数的变化。
图1-1 正面所占的比例随抛掷次数的变化
图中曲线呈现的特征是,当抛掷次数很少时,正面所占比例的变化幅度很大,并且与0.5的差值比较大,随着抛掷次数越来越多,正面所占的比例的变化幅度越来越小,而且一直围绕在0.5的周围。根据这条曲线,我们甚至可以预期,1 000次之后的曲线还会在0.5周围徘徊,感兴趣的读者可以把实验继续做下去。
大数定理,指的是随机事件发生的频率会随着随机试验次数的不断增加趋向于它的概率,简单来说就是,试验次数越多,频率离概率越近,而且越稳定。在上面的实验中,随机事件是“抛硬币出现正面”,频率是“正面出现所占的比例X/(X+Y)”,随着抛掷次数的增加,这个频率越发趋近概率值0.5,大数定理像一只“看不见的手”,掌控着试验过程。