- A+
在现实世界中,每时每刻都在发生各种各样的事情,有的事像苹果落地一样,有确凿无疑的结果,而有的事却像抛硬币一样,无法预知结果。数学家们既不是决定论者,也不是非决定论者,他们从数学的角度审视万事万物,概率论由此而来。
抽象地讲,概率论站在无知者和造物主之间审视世界,力图从现实世界中发现客观规律,帮助我们更深刻的认识现实世界。
在概率论的世界里,抛硬币、掷骰子等被统称为随机试验,每一个随机试验都会有一个或多个可能的结果,一个结果或某些结果的组合称为随机事件。
举例来说,抛硬币是一个随机试验,抛硬币可能的结果有两个:正面和反面。我们用一个大写字母来代表随机事件,那么,我们可以得到如下的四个随机事件。
A:抛硬币出现正面
B:抛硬币出现反面
C:抛硬币出现正面或反面
D:抛硬币既不出现正面也不出现反面
随机事件C和随机事件D往往会给初学概率论的人带来困扰,随机事件C根本就不是“随机”事件,分明就是一定会发生的确定性事件,随机事件D正相反,是一定不会发生的事件,自然也不是“随机”事件。概率论是一门完备的科学,它要涵盖所有的事件,而不是只研究那些“随机”事件,为此,我们需要一个度量随机事件的工具——概率。
概率,用于度量随机事件发生的可能性,是个定量指标,用大写字母P来表示。例如,随机事件A发生的概率是50%,可以写成:
P(A)=50%
概率有以下两个特性:
(1)概率是非负的,即对于任意随机事件A,P(A)≥0;
(2)对于任一随机试验,我们假定所有可能的结果有n种(n>0),分别记为A1,A2,…,An,如果这些结果两两之间都不可能同时出现,则P(A1)+P(A2)+…+P(An)=1。
事实上,在概率论所描述的数学世界中,所有的事件都是随机事件,如果一个事件不可能发生,我们认为它发生的概率是0,如果一个事件必然发生,我们认为它发生的概率是1。下面我们举两个有争议的例子。
随机事件A:公鸡下蛋。
这违背常识,不可能发生,P(A)=0。
随机事件B:人终有一死。
这是个客观事实,必然发生,P(B)=1。
就大多数人的认知,这两个概率是正确的。可是,生物学家或许会质疑这两个概率,甚至罗列一长串的生物新技术来反驳这两个概率。没错,我承认这两个概率可能是错误的,正如崔健唱的那样:“不是我不明白,这世界变化快。”世界在变化,概率也在变化,唯一不变的是:所有的事件都是随机事件。