什么是聚类分析:聚类分析建模的原理

2020年9月21日15:44:29什么是聚类分析:聚类分析建模的原理已关闭评论

什么是聚类分析:聚类分析建模的原理

聚类(Clustering)分析:是在没有给定划分类的情况下,根据信息相似度进行信息聚类的一种方法,因此聚类又称为无指导的学习。

与分类不同,分类需要先定义类别和训练样本,是有指导的学习。聚类就是将数据划分或分割成相交或者不相交的群组的过程,通过确定数据之间在预先指定的属性上的相似性,就可以完成聚类任务。

聚类的输入是一组未被标记的数据,根据数据自身的距离或相似度进行划分。划分的原则是保持最大的组内相似性和最小的组间相似性,也就是使不同聚类中的数据尽可能地不同,而同一聚类中的数据尽可能地相似。

比如根据股票价格的波动情况,可以将股票分成不同的类,总共可以分成几类,各类包含哪些股票,每一类的特征是什么,这对投资者,尤其对投资基金的人来说,可能是很重要的信息。当然,聚类除了将样本分类外,还可以完成孤立点挖掘,如将其应用于网络入侵检测或金融风险欺诈探测中。

  • 版权声明:本篇文章(包括图片)来自网络,由程序自动采集,著作权(版权)归原作者所有,如有侵权联系我们删除,联系方式(QQ:452038415)。