微积分与大数据的关系:微积分在大数据领域的作用
从17世纪开始,随着社会的进步和生产力的发展,以及航海、天文、矿山建设等许多课题要解决,数学也开始研究变化的量,进入了“变量数学”时代,微积分也由此诞生。通过微积分可以描述运动的事物,描述一种变化的过程。由于微积分是研究变化规律的方法,所以只要是与变化、运动有关的研究,都或多或少地与微积分存在联系,都需要运用微积分的基本思想和方法。可以说,微积分的创立极大地推动了生活的进步。
微积分是整个近代数学的基础,有了微积分,才有了真正意义上的近代数学。统计学中的概率论部分就是建立在微积分的基础之上的。比如,在函数关系的对应下,随机事件先是被简化为集合,继之被简化为实数,随着样本空间被简化为数集,概率相应地由奇函数约化为实函数。因此,微积分中有关函数的种种思想方法都可以畅通无阻地进入概率论领域。随机变量的数字特征、概率密度与分布函数的关系、连续型随机变量的计算等都是微积分现有成果的直接应用。
微积分的基础是极限论,在概率论中运用广泛,如分布函数的性质、大数定律、中心极限定理等。同时,在机器学习中,非常重要的各类最优化算法本质上就是在一定约束条件下求一个函数的最值,而这一概念和微积分基础中的极限论息息相关。